20 research outputs found

    Pushing coarse-grained models beyond the continuum limit using equation learning

    Full text link
    Mathematical modelling of biological population dynamics often involves proposing high fidelity discrete agent-based models that capture stochasticity and individual-level processes. These models are often considered in conjunction with an approximate coarse-grained differential equation that captures population-level features only. These coarse-grained models are only accurate in certain asymptotic parameter regimes, such as enforcing that the time scale of individual motility far exceeds the time scale of birth/death processes. When these coarse-grained models are accurate, the discrete model still abides by conservation laws at the microscopic level, which implies that there is some macroscopic conservation law that can describe the macroscopic dynamics. In this work, we introduce an equation learning framework to find accurate coarse-grained models when standard continuum limit approaches are inaccurate. We demonstrate our approach using a discrete mechanical model of epithelial tissues, considering a series of four case studies that illustrate how we can learn macroscopic equations describing mechanical relaxation, cell proliferation, and the equation governing the dynamics of the free boundary of the tissue. While our presentation focuses on this biological application, our approach is more broadly applicable across a range of scenarios where discrete models are approximated by approximate continuum-limit descriptions. All code and data to reproduce this work are available at https://github.com/DanielVandH/StepwiseEQL.jl.Comment: 42 pages, 18 figure

    Locating complex singularities of Burgers' equation using exponential asymptotics and transseries

    Full text link
    Burgers' equation is an important mathematical model used to study gas dynamics and traffic flow, among many other applications. Previous analysis of solutions to Burgers' equation shows an infinite stream of simple poles born at t = 0^+, emerging rapidly from the singularities of the initial condition, that drive the evolution of the solution for t > 0. We build on this work by applying exponential asymptotics and transseries methodology to an ordinary differential equation that governs the small-time behaviour in order to derive asymptotic descriptions of these poles and associated zeros. Our analysis reveals that subdominant exponentials appear in the solution across Stokes curves; these exponentials become the same size as the leading order terms in the asymptotic expansion along anti-Stokes curves, which is where the poles and zeros are located. In this region of the complex plane, we write a transseries approximation consisting of nested series expansions. By reversing the summation order in a process known as transasymptotic summation, we study the solution as the exponentials grow, and approximate the pole and zero location to any required asymptotic accuracy. We present the asymptotic methods in a systematic fashion that should be applicable to other nonlinear differential equations.Comment: 30 pages, 6 figure

    Mean exit time for diffusion on irregular domains

    Full text link
    Many problems in physics, biology, and economics depend upon the duration of time required for a diffusing particle to cross a boundary. As such, calculations of the distribution of first passage time, and in particular the mean first passage time, is an active area of research relevant to many disciplines. Exact results for the mean first passage time for diffusion on simple geometries, such as lines, discs and spheres, are well--known. In contrast, computational methods are often used to study the first passage time for diffusion on more realistic geometries where closed--form solutions of the governing elliptic boundary value problem are not available. Here, we develop a perturbation solution to calculate the mean first passage time on irregular domains formed by perturbing the boundary of a disc or an ellipse. Classical perturbation expansion solutions are then constructed using the exact solutions available on a disc and an ellipse. We apply the perturbation solutions to compute the mean first exit time on two naturally--occurring irregular domains: a map of Tasmania, an island state of Australia, and a map of Taiwan. Comparing the perturbation solutions with numerical solutions of the elliptic boundary value problem on these irregular domains confirms that we obtain a very accurate solution with a few terms in the series only. Matlab software to implement all calculations is available on GitHub.Comment: 31pages, 12 figure

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Computationally efficient mechanism discovery for cell invasion with uncertainty quantification.

    No full text
    Parameter estimation for mathematical models of biological processes is often difficult and depends significantly on the quality and quantity of available data. We introduce an efficient framework using Gaussian processes to discover mechanisms underlying delay, migration, and proliferation in a cell invasion experiment. Gaussian processes are leveraged with bootstrapping to provide uncertainty quantification for the mechanisms that drive the invasion process. Our framework is efficient, parallelisable, and can be applied to other biological problems. We illustrate our methods using a canonical scratch assay experiment, demonstrating how simply we can explore different functional forms and develop and test hypotheses about underlying mechanisms, such as whether delay is present. All code and data to reproduce this work are available at https://github.com/DanielVandH/EquationLearning.jl

    Locating complex singularities of Burgers’ equation using exponential asymptotics and transseries

    No full text
    Burgers’ equation is an important mathematical model used to study gas dynamics and traffic flow, among many other applications. Previous analysis of solutions to Burgers’ equation shows an infinite stream of simple poles born at 𝑡=0+, emerging rapidly from the singularities of the initial condition, that drive the evolution of the solution for 𝑡>0. We build on this work by applying exponential asymptotics and transseries methodology to an ordinary differential equation that governs the small-time behaviour in order to derive asymptotic descriptions of these poles and associated zeros. Our analysis reveals that subdominant exponentials appear in the solution across Stokes curves; these exponentials become the same size as the leading order terms in the asymptotic expansion along anti-Stokes curves, which is where the poles and zeros are located. In this region of the complex plane, we write a transseries approximation consisting of nested series expansions. By reversing the summation order in a process known as transasymptotic summation, we study the solution as the exponentials grow, and approximate the pole and zero location to any required asymptotic accuracy. We present the asymptotic methods in a systematic fashion that should be applicable to other nonlinear differential equations

    Mean exit time in irregularly-shaped annular and composite disc domains

    No full text
    Calculating the mean exit time (MET) for models of diffusion is a classical problem in statistical physics, with various applications in biophysics, economics and heat and mass transfer. While many exact results for MET are known for diffusion in simple geometries involving homogeneous materials, calculating MET for diffusion in realistic geometries involving heterogeneous materials is typically limited to repeated stochastic simulations or numerical solutions of the associated boundary value problem (BVP). In this work we derive exact solutions for the MET in irregular annular domains, including some applications where diffusion occurs in heterogenous media. These solutions are obtained by taking the exact results for MET in an annulus, and then constructing various perturbation solutions to account for the irregular geometries involved. These solutions, with a range of boundary conditions, are implemented symbolically and compare very well with averaged data from repeated stochastic simulations and with numerical solutions of the associated BVP. Software to implement the exact solutions is available on GitHub

    Mean exit time for diffusion on irregular domains

    No full text
    Many problems in physics, biology, and economics depend upon the duration of time required for a diffusing particle to cross a boundary. As such, calculations of the distribution of first passage time, and in particular the mean first passage time, is an active area of research relevant to many disciplines. Exact results for the mean first passage time for diffusion on simple geometries, such as lines, discs and spheres, are well-known. In contrast, computational methods are often used to study the first passage time for diffusion on more realistic geometries where closed-form solutions of the governing elliptic boundary value problem are not available. Here, we develop a perturbation solution to calculate the mean first passage time on irregular domains formed by perturbing the boundary of a disc or an ellipse. Classical perturbation expansion solutions are then constructed using the exact solutions available on a disc and an ellipse. We apply the perturbation solutions to compute the mean first exit time on two naturally-occurring irregular domains: a map of Tasmania, an island state of Australia, and a map of Taiwan. Comparing the perturbation solutions with numerical solutions of the elliptic boundary value problem on these irregular domains confirms that we obtain a very accurate solution with a few terms in the series only. MATLAB software to implement all calculations is available at https://github.com/ProfMJSimpson/Exit_time. </p

    Burgers' equation in the complex plane

    No full text
    Burgers' equation is a well-studied model in applied mathematics with connections to the Navier-Stokes equations in one spatial direction and traffic flow, for example. Following on from previous work, we analyse solutions to Burgers' equation in the complex plane, concentrating on the dynamics of the complex singularities and their relationship to the solution on the real line. For an initial condition with a simple pole in each of the upper-and lower-half planes, we apply formal asymptotics in the small-and large-time limits in order to characterise the initial and later motion of the singularities. The small-time limit highlights how infinitely many singularities are born at t = 0 and how they orientate themselves to lie increasingly close to anti-Stokes lines in the far field of the inner problem. This inner problem also reveals whether or not the closest singularity to the real axis moves toward the axis or away. For intermediate times, we use the exact solution, apply method of steepest descents, and implement the AAA approximation to track the complex singularities. Connections are made between the motion of the closest singularity to the real axis and the steepness of the solution on the real line. While Burgers' equation is integrable (and has an exact solution), we deliberately apply a mix of techniques in our analysis in an attempt to develop methodology that can be applied to other nonlinear partial differential equations that do not

    New computational tools and experiments reveal how geometry affects tissue growth in 3D printed scaffolds

    No full text
    Understanding how tissue growth in porous scaffolds is influenced by geometry is a fundamental challenge in the field of tissue engineering. We investigate the influence of pore geometry on tissue growth using osteoblastic cells in 3D printed melt electrowritten scaffolds with square-shaped pores and non-square pores with wave-shaped boundaries. Using a reaction–diffusion model together with a likelihood-based uncertainty quantification framework, we quantify how the cellular mechanisms of cell migration and cell proliferation drive tissue growth for each pore geometry. Our results show that the rates of cell migration and cell proliferation appear to be largely independent of the pore geometries considered, suggesting that observed curvature effects on local rates of tissue growth are due to space availability rather than directly affecting cell behaviour. This result allows for simple squared-shaped pores to be used for estimating parameters and making predictions about tissue growth in more realistic pores with more realistic, complicated shapes. Our findings have important implications for the development of predictive tools for tissue engineering and experimental design, highlighting new avenues for future research.</p
    corecore